A Green Synthesis of Copper Oxide Nanoparticles for Improved Performance in Monolithic Dye Sensitized Solar Cells
DOI:
https://doi.org/10.53704/fujnas.v13i2.545Keywords:
Green synthesis, Nanoparticles, Counter electrode, Monolithic Dye Sensitized Solar Cell, copper oxideAbstract
This research investigated the impact of incorporating green synthesised copper oxide nanoparticles into nanoporous carbon counter electrodes to enhance photovoltaic performance in Monolithic Dye-Sensitized Solar Cells (MDSSCs). Copper oxide nanoparticles were successfully synthesised using an extract from Ocimum gratissimum leaves. Optical absorption between 250 nm and 400 nm confirmed the formation of copper oxide nanoparticles. XRD patterns indicated the crystalline nature of the copper oxide nanoparticles, with an average crystallite size of 47.9 nm. FTIR analyses identified chemical bonds potentially responsible for nanoparticle formation. MDSSC performance evaluation demonstrated a significant 3.5% increase in efficiency over the cells without nanoparticles; this translates to a 105.9% increase in efficiency observed for cells with the nanoparticles. The incorporation of green-synthesized copper oxide nanoparticles into the counter electrode of MDSSCs exhibited an eco-benign and even dispersion, suggesting its potential as a promising nanomaterial for DSSC applications.
Keywords: Green Synthesis; Nanoparticles; Copper Oxide; Counter Electrode; Monolithic Dye -Sensitised Solar Cell
References
Abdulah, H. I., Rheima, A. M., Hussain, D. H. & Abed, H. J. (2022). Synthesis of Fe2O3 Nanoparticles by Photolysis Method for Novel Dye-sensitized Solar Cell. Journal of Advanced Sciences and Nanotechnology, 1(1), 1–8.
Adachi, T. & Hoshi, H. (2013) Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells, Mater. Lett. 94, 15–18, http://dx.doi. org/10.1016/j.matlet.2012.11.123.
Adedokun, O., Awodele, M.K., Sanusi, Y.K. & Awodugba, A.O. (2018). Natural dye extracts from fruit peels as sensitizers in ZNO-based dye-sensitized solar cells, IOP Conf. Ser. 173, 012040, https://doi.org/10.1088/1755-1315/173/1/012040.
Aghazada, S., Gao, P., Yella, A., Marotta, G., Moehl, T., Teuscher, J., Moser, J.E., De Angelis, F., Grätzel, M. & Nazeeruddin, M.K. (2016). Ligand engineering for the efficient dye-sensitised solar cells with ruthenium sensitizers and cobalt electrolytes, Inorg. Chem. 55 (2016) 6653–6659, http://dx.doi.org/10.1021/acs.inorgchem.6b00842.
Ahmad, I., McCarthy, J.E., Bari, M. & Gun’ko, Y. K. (2014). Carbon nanomaterial-based counter electrodes for dye sensitized solar cells, Sol. Energy 102, 152–161, http://dx. doi.org/10.1016/j.solener.2014.01.012.
Ahn, H.J., Kim, I.H., Yoon, J.C., Kim, S.I. & Jang, J. H. (2014). p-Doped three-dimensional graphene nano-networks superior to platinum as a counter electrode for dye-sensitized solar cells, Chem. Commun. 50, 2412–2415, http://dx.doi.org/10. 1039/c3cc48920e.
Aitken, R.J., Chaudhry, M.O., Boxalland, A.B. & Hull, M. (2006). Manufacture and use of nanomaterials: current status in the UK and global trends, Occup. Med. 56 (5), 300–306, https://doi.org/10.1093/occmed/kql051
Anta, J.A., Guillén, E. & Tena-Zaera, R. (2012). ZnO-based dye-sensitized solar cells, J. Phys. Chem. C 116, 11413–11425, http://dx.doi.org/10.1021/jp3010025
Bai, Y., Yu, Q., Cai, N., Wang, Y., Zhang, M. & Wang, P. (2011). High-efficiency organic dyesensitized mesoscopic solar cells with a copper redox shuttle, Chem. Commun. 47, 4376, http://dx.doi.org/10.1039/c1cc10454c
Baker, J., Deganello, D., Gethin, D. T. & Watson, T . M. (2014). Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell, Mater. Res. Innov 18, 86–90, http://dx.doi.org/10. 1179/1433075x14y.0000000203.
Balamurughan, M.G., Mohanraj, S., Kodhaiyolii, S., Pugalenthi, V. & Chem, J. (2014). Pharm. Sci. 4 201–204, https://doi.org/10.1515/gps-2017-0145.
Behera, S.S., Patra, J.K., Pramanik, K., Panda, N. & Thatoi, H. (2012). Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles, World J. Nano Sci. Eng. 2 196, https://doi.org/10.4236/ wjnse.2012.24026.
Bella, F., Gerbaldi, C., Barolo, C. & Grätzel, M. (2015). Aqueous dye-sensitized solar cells, Chem. Soc. Rev. 44, 3431–3473, http://dx.doi.org/10.1039/C4CS00456FHigashino, T. & Imahori, H. (2015). Porphyrins as
excellent dyes for dye-sensitized solar cells: recent developments and insights, Dalt. Trans. 44, 448–463, http://dx.doi. org/10.1039/c4dt02756f.
Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F.M., Khan, M.I., Jalal, F. & Iqbal, M. (2019) Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye, J. Mater. Res. Technol. 8, 6115–6124, https:// doi.org/10.1016/j.jmrt.2019.10.006
Chen, T.Y., Huang, Y.J., Li, C.T., Kung, C.W., Vittal, R. & Ho, K.C. (2017). Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells, Nano Energy 32, 19–27, http://dx.doi. org/10.1016/j.nanoen.2016.12.019.
Freitag, M., Teuscher, J., Saygili, Y., Zhang, X., Giordano, F., Liska, P., Hua, J., Zakeeruddin, S.M., Moser, J., Grätzel, M. & Hagfeldt, A., (2017). Dye-sensitized solar cells for efficient power generation under ambient lighting, Nat. Photon. 11, 372–378, http://dx.doi.org/10.1038/nphoton.2017.60
Fu, D., Lay, P. & Bach, U. (2013) TCO-free flexible monolithic back-contact dye-sensitized solar cells, Energy Environ. Sci. 6, 824, http://dx.doi.org/10.1039/ c3ee24338a.
Fu, D., Li Zhang, X., Barber, R.L. & Bach, U. (2010) Dye-sensitized back-contact solar cells, Adv. Mater. 22, 4270–4274, http://dx.doi.org/10.1002/adma.201001006
Gong, J., Sumathy, K., Qiao, Q. & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends, Renew. Sustain. Energy Rev. 68, 234–246,
Gratzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841–6851, https://doi.org/10.1021/ic0508371.
Huang, Z., Meier, H., & Cao, D. (2016). Phenothiazine-based dyes for efficient dye-sensitized solar cells, J. Mater. Chem. C 4, 2404–2426, http://dx.doi.org/10.1039/ C5TC04418A.
Ito, S., Murakami, T.N., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M.K. & Gratzel, M. (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 516 (14) 4613–4619, https://doi.org/10.1016/j.tsf.2007.05.090
Ito, S. & Takahashi, K. (2012). Fabrication of monolithic dye-sensitized solar cell using ionic liquid electrolyte, Int. J. Photoenergy 2012, 1–6, http://dx.doi.org/10.1155/ 2012/915352. .
Kamil, A. F., Abdullah, H. I., Rheima, A. M., Mohammed, S. H., Tumaa, S. J. & Abed, R. M. (2021). Fabrication of Fe2CuO4 nanoparticles via photolysis technique for improved performance in dye-sensitized solar cells. Digest Journal of Nanomaterials and Biostructures, 16(4), 1453–1460.
Kuang, D., Seigo, I., Bernard, W., Cedric, K., Jacques-E, M., Robin, H., Shaik, Z. & Michael, G. (2006). High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye sensitized solar cells. Journal of the American chemical society, 12, 4146-4157.
Kwon, J., Park, N.G., Lee, J.Y., Ko, M.J. & Park, J. H. (2013) Highly efficient monolithic dyesensitized solar cells, ACS Appl. Mater. Interfaces 5 2070–2074, http://dx. doi.org/10.1021/am302974z..
Li, T.Y., Su, C., Akula, S.B., Sun, W.G., Chien, H.M. & Li, W.R. (2016). New pyridinium ylide dyes for dye sensitized solar cell applications, Org. Lett. 18, 3386–3389, http:// dx.doi.org/10.1021/acs.orglett.6b01539.
Liang, M. & Chen, J. (2013). Arylamine organic dyes for dye-sensitized solar cells, Chem. Soc. Rev. 42, 3453, http://dx.doi.org/10.1039/c3cs35372a.
Lin, C.J., Yu, W.Y. & Chien, S.H. (2008). Rough conical-shaped TiO2-nanotube arrays for flexible backilluminated dye-sensitized solar cells, Appl. Phys. Lett. 93, 133107, http://dx.doi.org/10.1063/1.2992585
Lin, C.Y., Lai, Y.H., Chen, H.W., Chen, J.G., Kung, C.W., Vittal, R. & Ho, K.C. (2011). Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode, Energy Environ. Sci. 4, 3448, http://dx.doi.org/10.1039/c0ee00587h.
-0346-6.
Liu, G., Wang, H., Li, X., Rong, Y., Ku, Z., Xu, M., Liu, L., Hu, M., Yang, Y., Xiang, P., Shu, T. & Han, H. (2012). A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell, Electrochim. Acta 69, 334–339, http://dx.doi.org/10.1016/j.electacta.2012.03.012.
Lizama-Tzec, F.I., Garcia-Rodriguez, R., Rodriguez-Gattorno, G., Canto-Aguilar, E.J., Vega-Poot, A.G., Heredia-Cervera, B.E., Villanueva-Cab, J., Morales-Flores, N., Pal, U. & Oskam, G. (2018). Influence of morphology on the performance of ZnO-based dye-sensitized solar cells, RSC Adv. 6 (2016) 37424–37433, http://dx.doi.org/10.1039/
Oskam, G., Bergeron, B.V., Meyer, G.J. & Searson, P. C. (2001). Pseudohalogens for dye-sensitized TiO, {2} photoelectrochemical cells, J. Phys. Chem. B 105, 6867–6873, http://dx.doi.org/10.1021/jp004411d.
Pettersson, H., Gruszecki, T., Johansson, L.H. & Johander, P. (2003). Manufacturing method for monolithic dye-sensitised solar cells permitting long-term stable low-power modules, Sol. Energy Mater. Sol. Cells 77, 405–413, http://dx.doi.org/10.1016/ S0927-0248(02)00368-9.
Qureshi, A. A., Javed, S., Asif Javed, H. M., Akram, A., Jamshaid, M. & Shaheen, A. (2020). Strategic design of Cu/TiO2-based photoanode and rGO-Fe3O4-based counter electrode for optimized plasmonic dye-sensitized solar cells. Optical Materials, 109.
Rajesh, K.M., Ajitha, B., Ashok Kumar Reddy, Y., Suneetha, Y. and Sreedhara Reddy P. (2017) Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical, and antimicrobial properties, Optik. 154, 593 – 600, https://doi.org/10.1016/j.ijleo.2017.10.074
Rong, Y., Liu, G., Wang, H., Li, X. & Han, H. (2013). Monolithic all-solid-state dye-sensitized solar cells, Front. Optoelectron. 6, 359–372, http://dx.doi.org/10.1007/ s12200-
Roy, P., Kim, D., Lee, K., Spiecker, E. & Schmuki, P. (2010). TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale 2, 45–59, http://dx.doi.org/ 10.1039/b9nr00131j.
Salih, W. M., Rheima, A. M. & Kadhum, H. A. (2021). Synthesis and Characterization of CeO (x-) CuO (1-x Nanocomposite by Simple Aqueous Route for Solar Cell Application.
Sharmoukh, W. & Allam, N. K. (2012). TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor, ACS Appl. Mater. Interfaces 4, 4413–4418, http://dx.doi.org/10.1021/am301089t. .
Takeda, Y., Kato, N. & Toyoda, T. (2009) Advances in monolithic series-interconnected solar cell development, SPIE Newsroom 2–4, http://dx.doi.org/10.1117/2. 1200903.1581.
Thompson, S.J., Pringle, J.M., Zhang, X.L. & Cheng, Y.B. (2013) A novel carbon–PEDOT composite counter electrode for monolithic dye-sensitized solar cells, J. Phys. D Appl. Phys. 46, 24007, http://dx.doi.org/10.1088/0022-3727/46/2/ 024007
Wang, H., Liu, G., Li, X., Xiang, P., Ku, Z., Rong, Y., Xu, M., Liu, L., Hu, M., Yang, Y. & Han, H. (2011). Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode, Energy Environ. Sci. 4, 2025–2029, http://dx.doi.org/10.1039/c0ee00821d
Wild, M., Griebel, J., Hajduk, A., Friedrich, D., Stark, A., Abel, B. & Siefermann, K.R. (2016). Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells, Sci. Rep. 6, 26263, http://dx.doi.org/10.1038/srep26263.
http://dx.doi.org/10.1016/j.rser.2016.09.097.
Yardily, A. & Sunitha, N. (2019). Green synthesis of iron nanoparticles using hibiscus leaf extract, characterization, antimicrobial activity, Int. J. Sci. Res. Rev. 8 (7), https://doi.org/10.1155/2022/5474645.
Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A. K., Nazeeruddin, M.K., Diau, G., Yeh, C.Y., Zakeeruddin, S.M. & Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency, Science 334, 629–634, http://dx.doi.org/10.1126/science.1209688. .
Yu, Y., Zheng, H., Zhang, X., Liang, X., Yue, G., Li, F., Zhu, M., Li, T., Tian, J. & Yin, G. (2016). An efficient dye-sensitized solar cell with a promising material of Bi 4 Ti 3 O 12 nanofibers/graphene, Electrochim. Acta 215, 543–549, http://dx.doi.org/10. 1016/j.electacta.2016.08.086.
Zebardastan, N., Khanmirzaei, M.H., Ramesh, S. & Ramesh, K. (2017). Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide-based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell, Org. Electron. 49, 292–299, http://dx.doi.org/10.1016/j.orgel. 2017.06.062.
Zhu, S., Shan, L., Tian, X., Zheng, X., Sun, D., Liu, X., Wang, L. & Zhou, Z. (2014). Hydrothermal synthesis of oriented ZnO nanorod-nanosheets hierarchical architecture on zinc foil as flexible photoanodes for dye-sensitized solar cells, Ceram. Int. 40, 11663–11670, http://dx.doi.org/10.1016/j.ceramint.2014.03.173.
Zi, M., Zhu, M., Chen, L., Wei, H., Yang, X. & Cao,B. (2014). ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties, Ceram. Int. 40, 7965–7970, http://dx.doi.org/10.1016/j. ceramint.2013.12.146.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ayodele Abiodun, Dr. G. A. Alamu, O.O Daramola, Dr. O. Adedokun, Prof. Y. K. Sanusi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Fountain Journal of Natural and Applied Sciences. Articles in FUJNAS are published on the Creative Commons Attribution 4.0 International license (CC BY 4.0).