Spray Pyrolysis Deposition and Characterisation of Dielectric SnO2 Thin Films
DOI:
https://doi.org/10.53704/fujnas.v8i2.270Abstract
Dielectric and optical dispersion properties of thin films of SnO2 deposited via spray pyrolysis were investigated. These properties are fundamental to new applications of SnO2 in energy storage and pressure sensing. The composition and thickness of the films were determined using the Rutherford Backscattered Spectroscopic mode of the Pelletron Tandem Accelerator. X-ray diffraction (XRD) technique and scanning electron microscope (SEM) were used to examine the crystal structure and surface morphology of the films. Optical transmission data were analyzed to obtain the optical band gap, dispersion parameters, and dielectric constants. The analyses showed that the films were polycrystalline in nature with the tetragonal rutile crystal structure. It was also observed that annealed films increased in thickness compared to the asdeposited samples. The Urbach tail width of the annealed sample also decresed from 293 to 252 meV indicating an improvement in crystallinity with heat treatment. The refractive index dispersion in the visible region analyzed in terms of long wavelength single-oscillator Sellmier approximation was in the range 1.9 -3.0. The zero and high-frequency dielectric constants were evaluated. The values of these constants could be a justification for further exploration of SnO2-based materials for charge storage and capacitive pressure sensing.
Keywords: pyrolysis, dielectric, refractive index, thin films
References
Abdullah , M., Suhail , M., & Abbas, S. (2012). Fabrication and testing of SnO2 thin films as a gas sensor. Archives of Appllied Science Resolution, 4(3), 1279-1288.
Bancolo, F., Santos, G., & Quiroga, R. (2012). Fabrication and Characterization of SnO2 Nanomaterial as CO2 Gas Sensor. International Journal of Scientific and Engineering Research, 3, 1-6.
Batal, M., Nashed, G., & Jneed, F. (2012). Electrical properties of nanostructure tin oxide thin film doped with copper prepared by sol-gel method. Latin America Journal of Physics Education, 6(2), 311.
Batzill , M., & Diebold, U. (2005). The Surface and Materials Science of Tin Oxide. Progress in Surface Science, 79(2), 47-154.
Borse, R., & Garde, A. (2008). Electrical Gas Sensing properties of SnO2 Thick Film Resistors Prepared by Screen Printing Method. Sensors & Transducers, 97(10), 64-73.
Brousseau, J., Bourque , H., Tessier, A., & Leblanc, R. (1997). Electrical properties and topography of SnO2 thin films prepared by reactive sputtering. Applied Surface Science, 351-358.
Caglar, Y., Llican, S., & Caglar, M. (2007). Singleoscillator Model and Determination of Optical Constants of Spray Pyrolyzed Amorphous SnO2 Thin Films. 58(3), 251-256.
Chani, M., Khan, S., Asiri, A., Karimov, K., Abid , M., & Bashir, M. (2015). Influence of Pressure on the Impedance of SnO2 Nanopowder. Optoelectronic Advanced Materials Rapid Communication, 9(1-2), 114-119.
Chani, M., Khan, S., Karimov, K., Abid, M., Asiri, A., & Akhtar, K. (2015). Synthesis of Metal Oxide Composite Nanosheets and Their Pressure Sensing properties. Journal of Semiconductors, 36(2), 023002.
Chen, W., Zhou, Q., Wan, F., & Gao, T. (2012). Gas Sensing Properties and Mechanism of Nano-SnO2 Based Sensor for Hydrogen and Carbon Monoxide. Journal of Nanomaterials.
Edukondalu, A., Shaik, K., & Gupta, A. (1992). Optical properties of amorphous Li2O-WO3-B2O3 thin films deposited by electron beam evaporation. Phys. D, 25, 535.
Fasasi, , A., Ngom, B., Kana-Kana, J., & Butcher, R. (2009). Synthesis and characterisation of Gddoped BaTiO3 thin films prepared by laser ablation for optoelectronic applications. Journal of Physics and Chemistry of Solids, 70(10), 1322-1329.
Galatsis,, K., Cukrov, L., Wlodarski, W., McCormick, P., Kalantar-Zadeh, K., & Comini, E. (2003). 1p- and n-type Fe-doped SnO2 Gas Sensors Fabricated by the Mechanochemical Processing Technique. Sensors and Actuators B: Chemical, 93(1), 562-565.
Gedanken, A., Selvan, R., Perelshtein, I., & Perkas, N. (2008). Synthesis of Hexagonal-shaped SnO2 Nanocrystals and SnO2-C Nanocomposites for Electrochemical Redox Supercapacitors. The Journal of Physical Chemistry C, 112(6), 1825-1830.
Gordillo, G., Moreno, L., Dela Cruz, W., Teheran, Dela Cruz, W., & Teher. (1994). Preparation and Characterization of SnO2 Thin Films Deposited by Spray Pyrolysis from SnCl2 and SnCl4 Precursors. Thin Solid Films, 252(1), 61-66.
Guan, Y., Wang, D., Zhou, X., Sun, P., & Wang, H. (2014). Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures. Sensors and Actuators B: Chemical, 191, 45-52.
He, C., Xiao, Y., Dong, H., Liu, Y., Zheng, M., & Xi. (2014). Mosaic-structured SnO2@C Porous Microspheres for High-performance Supercapacitor Electrode materials. Electrochimica Acta, 142, 157-166.
Hu, Z., Xie, Y., Wang, Y., Mo, L., Yang, Y., & Zha. (2009). Polyaniline/SnO2 nanocomposite for Supercapacitor Applications. Materials Chemistry and Physics, 114(2-3), 990-995.
Ikhmayies, S., & Ahmad-Bitar, R. (2013). An Investigation of the Bandgap and Urbach Tail of Vacuum-evaporated SnO2 Thin Films. Renewable Energy, 49, 143-146.
Jarzebski, Z., & Morton , J. (1976). Physical Properties of SnO2 Materials III. Optical Properties. Journal of Electrochemical Society, 123(10), 333C-346C.
Korotcenkov, G., Brinzari, V., Schwank, J., DiBattista, M., & Vasiliev, A. (2001). Peculiarities of SnO2 Thin Film Deposition by Spray Pyrolysis for Gas Sensor Application. Sensors and Actuators B: Chemical, 77(1-2), 244-252.
Li, F., Song, J., Yang, H., Gan, S., Zhang, Q., Ha Yang, H., & Gan, S. (2009). One-Step Synthesis of Graphene/SnO2 Nanocomposite and Its Application in Electrochemical Supercapacitors. Nanotechnology, 20(45), 455602.
Lim, S., Desu, S., & Rastogi, A. (2008). Chemical spray pyrolysis deposition and characterization of p-type CuCr1-xMgxO2 transparent oxide semiconductor thin films. Journal of Physics and Chemistry of Solids, 69(8), 2047-2056.
Liu, K., Sakurai , M., & Aono, M. (2012). Enhancing the Humidity Sensitivity of Ga2O3/SnO2 Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor. Small, 8(23), 3599-3604.
Liu, X., Cheng, S., Liu, H., Hu, S., Zhang , D., & Ning, H. (2012). A Survey on Gas Sensing Technology. Sensors, 12(7), 9635-9665.
Melsheimer, J., & Ziegler, D. (1985). Band Gap Energy and Urbach Tail Studies of Amorphous, Partially Crystalline and Polycrystalline Tin Oxide. Thin Solid Films, 129(1), 35-47.
Natsume, Y., Sakata, H, H., & Hirayama, T. (1995). Low-temperature electrical conductivity and optical absorption edge of ZnO films prepared by chemical vapour deposition. Physica Status Solidi (a), 148(2), 485-495.
Park, K., Choi, Y., Kang, J., Sung, Y., & Park, J. (2011). The effect of the concentration and oxidation state of Sn on the structural and electrical properties of indium tin oxide nanowires. Nanotechnology,, 22(28), 285712.
Perednis, D., & Gauckler, L. (2005). Thin Film Deposition Using Spray Pyrolysis. Journal of Electroceramics, 14(2), 103-111.
Pusawale, S., Deshmukh, P., & Lokhande, C. (2011). Chemical Synthesis of Nanocrystalline SnO2 thin Films for Supercapacitor Application. Applied Surface Science, 257(22), 9498-9502. Serin, T., Serin, N., Karadeniz, S., Sari, H., Tugluoglu, N., & Pakma, O. (2006). Electrical, Structural and Optical Properties of SnO2 Thin Films Prepared by Spray Pyrolysis. Journal of Non-Crystalline Solids, 352(3), 209-215.
Shen, W., Ou, T., Wang, J., Qin, T., Zhang, G., & Zhang, X. (2018). Effects of High Pressure on the Electrical Resistivity and Dielectric Properties of Nanocrystalline SnO2. Scientific Reports, 8(1), 5086.
Shine , S., Patil, G., Kajale, D., Chavan, D., Pawar, N., & Ahire, P. (2011). Synthesis, Characterisation and Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis. Bulletin of Materials Science, 34(1), 1-9.
Sohn, J., Kim, S., Kim, Z., & Yu, Y. (2009). H2S gas sensing properties of SnO2:CuO thin film sensors prepared by e-beam evaporation. Transactions on Electrical and Electronic Materials, 10(4), 135-139.
Summitt, R. (1968). Infrared Absorption in Single-Crystal Stannic oxide: Optical Lattice ibration Modes. Journal of Applied Physics, 39(8), 3762-3767.
Thirumala, N., Tripathy, S., Prabeena, R., & Jahnavi, V. (2014). Tin oxide thin film synthesized by sol-gel and thermal evaporation techniques for gas sensors. Int.J.Sci.Res, 3, 101-105.
Tiemann, M. (2007). Porous metal oxides as gas sensors. Chemistry-A European Journal, 13(30), 8376-8388.
Tsay, C., & Liang, S. (2015). Fabrication of p-type conductivity in SnO2 thin films through Gas doping. Journal of Alloys and Compounds, 644- 650.
Wang, X., Ren, S., Yang, Y., Xu, M., Cai, H., & Hao, C. (2014). Hollow SnO2 Microspheres and Their Carbon-Coated Composites for Supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 444, 26-32.
Wu, Q., Li, J., & Sun, S. (2010). Nano SnO2 Gas Sensors. Current Nanoscience, 6(55), 525-538.
Wu, X., Liu, Y., Jiao, Y., Zhang, Z., Qu, F., & Umar, A. (2014). Hierarchical SnO2 Nanostructures made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, Supercapacitor Applications. ACS applied materials and interfaces, 6(3), 2174-2184.
Yildirim, M., Yildirim, S., & Sakar, E. (2014). Synthesis, characterization and dielectric properties of SnO2 thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 65.
Zeng, W., Liu, T., & Wang, Z. (2010). Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E: Lowdimensional Systems and Nanostructures, 43(2), 633-638.
Zhang , S., Shen, W., Ou, T., Wang, J., Qin, T., & Zhang, G. (2018). Effects of High Pressure on the Electrical Resistivity and Dielectric Properties of Nanocrystalline SnO2. Scientific Reports, 8(1), 5086.
Zhang, J., Wang, S., Wang, Y., Zhu, B., Xia, H., & Wu, S. (2009). NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B: Chemical, 135(2), 610-617.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Lukman Olalekan Animasahun

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Fountain Journal of Natural and Applied Sciences. Articles in FUJNAS are published on the Creative Commons Attribution 4.0 International license (CC BY 4.0).