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Abstract

This work focuses on development of an initial value problem solver by employing a new class of orthogonal
polynomial, the basis function. We present the recursive formula of the class of polynomials constructed
and adopt collocation technique to develop the method. The method was analyzed for its basic properties
and findings show that the method is accurate and convergent.
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Introduction

The second order differential equations
arise in many important area of physical problems.
The difficulties encounter in solving such problems
has led to development of numerical methods. To
develop such numerical methods, polynomial plays
an important role. Notable among the well-known
polynomials are the orthogonal polynomials.
Orthogonal polynomial sequence is a family of
polynomials such that any two different polynomials
in the sequence are orthogonal to each other under
some inner product. The first orthogonal
polynomials were the Legendre polynomials. Then
came the Chebyshev polynomials, the general
Jacobi polynomials, the Hermite and the Laguerre

polynomials. All these classical orthogonal
polynomials play an important role in many applied
problems.

Asymptotic formulae for orthogonal

polynomials were first discovered bySzegg, (1975).
Lanczos (1938) introduced Chebyshev polynomials
as trial function. Several researchers have
employed these polynomials as trial functions to
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formulate algorithms (see Shampine and Watts
(1969), Tanner (1979), Dahlquist (1979), Jator
(2007), Awoyemi (1991)) which are in block forms
for solving second order initial value problems
directly.

Fatunla (1994) gave a generalization to

blockmethods using some definition inmatrix
form.Hence, thismotivates us to extend themethod
to blockmethod in solving ODEs using a hew set of
polynomials.
In this work, we shall employ a non-negative weight
function to construct a class of orthogonal
polynomials which will serve as trial functions to
formulate numerical algorithms for the solution of
initial value problems.

Construction of Orthogonal Basis Function
We define the orthogonal polynomial of
the first kind of degree n over the interval [-1, 1]

with respect to weight functionW(x) = (x* —1)*as
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The following requirements are considered:
<qm(x),qn(x)> =0, m=012,...,n-1 (2a)

For the purpose of constructing the basis function,
we adopt the approach discussed extensively in
Adeyefa and Adeniyi (2015) and use additional
property (the normalization)

G =1 (2b).

Using (2), equation (1) yields

do(x) =1
au(x) = x

1
62(9) = £ (7X* =)

1
a3(x) = 5(3X3 - X)
a,(x) = % (33x* —18x% +1)
05(X) = % (143x° —110x® +15x) 3)
s (X) = % (143x® —143x* +33x% - 1)
a;(x) = 3—12(221x7 —273x% +91x% - 7x)

gg(X) = ﬁ(uggxs —6188x° + 2730x* —364x2 + 7)

%(2261%’ —3876x" + 2142x% — 420x° + 21x)

dg (X)

Guo(X) = ﬁ(ngx10 —14535x% + 9690x° — 2550x* + 225x° — 3)

In the spirit of Golub and Fischer (1992), equation
(3) must satisfy three-term recurrence relation

C; p(t)= (t_aj)pj—l(t)_bj Pi- t).j=12.., p—l(t) =0, po(t) =P
where
bj, c» O for j =1 (bs is arbitrary).

o pt) = (+5)R (), (t- aj)pj_l(t) = (2 + 5)xB, (%), bj pj_z(t) =R (). =12,
The recursive formula for these orthogonal
polynomials is therefore given as

B0 =~ [(20+ 540, ~1P 00} 21 R0 =1 R0 ~x

This relation, along with the two
polynomials Po(x) and Pi(x), allows the new set of
polynomials to be generated recursively.

In what immediately follows, we shall
develop an algorithm to integrate second order
differential equations where polynomials gn(x) shall
be employed as basis function. Thereafter, the
analysis of the method for convergence and
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implementation of the method through some test
problems shall be presented. Finally, conclusion
shall be made.

Development of the Method

In this section, our aim is to derive a
continuous scheme from which a set of block
formula is developed. To make this happen, we shall
seek an approximant

Y%= Y a,q09 0

to obtain the solution of second order initial value

problems in ordinary differential equations.

Transforming gn(x) to interval [0, 1], we have

2X —2x, —ph

X=——0 -
ph

to be developed. In this case, p = 3, s and k in (4)

are points of interpolation and collocation
respectively. The procedure involves interpolating

, Where p varies as the method

1
(4) at points s = 0,5 and collocating the second

1111

[} 3 )_11a2a3.
5432

The a-, r = 0(1)9 from the resulting system of
equations are obtained as

derivative of (4) at points k = O,

()

09, |

N |-

w | =

~| -

'

Ul |

3
8 =ay, tay i+ WY B+ BT

33 j=0

Substituting (5) into (4) yields the continuous
implicit method

S 1111
Y =agy, +ayy +h°Y BT B T=2 200 (6)
3™ 5432
111
E l 1- T 6 1- = n+tm, =_1_1_11|213
valuating equation (6) at X = Xpem, M 51’2
yields the discrete equations
S 1111
yn+m = aOyn +a}yn+1 +h22ﬂj fn+j +h2ﬂi fn+i’ I =§,Z,§,E (7)

33 j=0

whose values of @ and / are given in Table 1.

To develop the block method from the continuous
scheme, we adopt the general block formula
proposed in Shampine and Watts (1969) in the
normalized form given as
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AOY_ = ey, +h“*df (y,) +h* *bF (yy) ®)

Evaluating the first derivative of (6) at x = Xn.j, j =
0, 1111

—,—,=,=1,2,3, substituting the
5'4'3'2

Analysis of the Method

Order and Error Constant

Following Henrici (1962), the approach
adopted in Fatunla (1991, 1994) and Lambert
(1973), we define the local truncation error
associated with equation (7) by the difference
operator

L[y(x): h] :Zk:[a y(x, + i —h?8, £ (x, + )] (1o

j=0

where Y(X) is an arbitrary function, continuously
differentiable on [a, b].

Expanding (10) in Taylor series about the point x,
we obtain the expression

LLy(x)sh]=Coy(x) + Ly (x)+ Coh7y " (x)+...+ C "y (x)

p+3
where the C;, , C, , C, ,C,.... are obtained as

1 k
C =2 itay,

qua —q(q-D(a- Z)Zﬁ,J }

j=1

l—l

According to Lambert (1973), equations (7) is of
order p if

¢ =C=C,=..C,=C,,=0andC , =0
The C,,, #0 is called the error constant and
C,..nP?yP%(x,) is the principal local truncation

error at the point X;,.
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resulting equations and equation (7) into (8) and
solving simultaneously gives a block formulae
represented as Equation (9) is our desired block
method of which its basic properties shall be
discussed in the next section.

Thus, equations (7) is of order 8 with the error
constants

C,., =[176x10" 489x10* 5.25x10™ -259x10* 7.22x10° -1.22x10" |

Zero Stability of the Method

According to Lambert (1973), a linear
multistep method is said to be zero-stable if no
root of the first characteristic polynomial p(R)
has modulus greater than one and if every root of
modulus one has multiplicity not greater than the
order of the differential equation.

To analyze the zero-stability of the
method, we present (9) in vector notation form of

column vectors e=(g,...e,)’, d=(d,...d )",
ym = (yn+l "'yn+r )T ‘ F(ym)= (fn+1 fn+r )T and
matrices A=(a;) . B=(by).

Thus, equation (9) forms the block formula

A’y  =hBF(y,)+ A'y, +hdf_ (1)

whereh is a fixed mesh size within a block.

Hence, based on the definition above, the scheme
is zero stable.

Consistency of the Method

According to Lambert (1973), a linear
multistep method is said to be consistent if it has
order at least one. Owing to this definition,
equations (7) and (9) are consistent.
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Convergency of the Method

According to the theorem of Dahlquist, the
necessary and sufficient condition for a LMM fo be
convergent is to be consistent and zero stable.
Since the method satisfies the two conditions
hence it is convergent.

4.5 Numerical Experiment
Three test problems are considered to

y =-1001y —1000y, y(0) =1,y (0) =—1,h =0.05
Exact Solution: y(x) = exp(—x)

Problem 2:

"6 ' 4 ' 0.1
y =-1 —X—Zy,y(l)—l,y(l)—l,h—ﬁ
ion: v(x) =2 — _2_

Exact Solution: y(x) =3 ")

Problem 3: We consider Vander pol's Oscillator Problem

demonstrate the accuracy of the method.

y"=2005x—cos3x—y —y—yzy',y(0)=0, y (0)=Lh=01

15

Problem 1: whose exact solution is y(x) = sinx
Table 1: Tabular Representation of Discrete Equations
y 1 y 1 y 1 yn+1 yn+2 yn+3
n+= n+=— n+-
5 4 2
fn - 559066591 - 146852003 4222913 258407 6193885 23653037
6458484375 00 2708884684 80 4232632320 8266860 1653372 688905
f 1 128106749 -10505023435 1525273435 210859375 111592890@5 1965882812 5
n+— - - —
5 5208121800 682638940596 42664933786 208324872 833299488 17360406
f 1 23868016056 208524331 4832648 328042496 688990208 1047464099 84
n+=— - E— - -
4 1243258242875 2036954304 0 159137055 159137055 2893401 53045685
f 1 91280227 5095663 1045799 36593 1580795 2625347
n+— - - - - - -
3 1181250000 990904320 30965760 30240 12096 2520
f 1 1617428144 2159021 299791 2781328 28511696 355815616
n+— - - -
2 242193164625 5079158784 198404640 6200145 1240029 2066715
fm1 5594563 -1483733 103099 119087 24778813 2953843
64584843790 270888468480 3386105850 8266860 13226976 688905
fn +2 21226229 1124087 - 3103 28073 5553811 11209049
20344225782500 1706597354240 5333116723 2 520812180 104162436 8680203
frs - 6957967 - 368323 2203 7723 -123143 4323101
198921318500000 16686729683680 104292060%48 5092385760 185177664 84873096
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Table 2: Numerical Results of Problem 1

X Exact New Method Error Error in [2]
0.05 | 0.95122942450071400909 | 0.95122942450071076950 | 3.23959e-15 2.05e-11
0.1 0.90483741803595957316 | 0.90483741803594163261 | 1.794055e-14 4.39e-11
0.15 | 0.86070797642505780723 | 0.86070797642498871168 | 6.909555e-14 6.55e-11
0.2 0.81873075307798185867 | 0.81873075307774470455 | 2.3715412e-13 8.38e-11
0.25 | 0.77880078307140486825 | 0.77880078307062386240 | 7.8100585e-13 9.86e-11
0.03 | 0.74081822068171786607 0.74081822067918416587 | 2.5337002e-12 1.10e-10
0.35 | 0.70468808971871343435 | 0.70468808971053769036 | 8.17574399¢-12 1.19e-10
0.4 0.67032004603563930074 | 0.67032004600930714374 | 2.6332157e-11 1.24e-10
0.45 | 0.63762815162177329314 0.63762815153701783346 | 8.475545968e-11 1.28e-10
05 0.60653065971263342360 | 0.60653065943988919902 | 2.7274422458e-10 | 1.30e-10
Table 3: Numerical Results of Problem 2
X Exact New Method Error Error in [4]
0.003125 | 1.00307652585769622630 | 1.00307652585769623090 | 4.6e-18 3.8354 E-05
0.00625 | 1.00605750308351628300 | 1.00605750308351632460 | 4.16e-17 7.5004E-05
0.009375 | 1.00894499508883757910 | 1.00894499508883768810 | 1.09e-16 1.0592 E-04
0.0125 1.01174101816798852880 1.01174101816798873410 2.053e-16 1.35476 E-04
0.015625 | 1.01444754268641387440 | 1.01444754268641420320 | 3.288e-16 1.55567E-04
0.01875 1.01706649423567260840 | 1.01706649423567308660 | 4.782e-16 1.86372E-04
0.021875 | 1.01959975475628759200 | 1.01959975475628824410 | 6.521e-16 1.96055E-04
0.025 1.02204916362943174130 1.02204916362943259040 | 8.491e-16 2.21045E-04
0.028125 | 1.02441651873840268050 | 1.02441651873840374840 | 1.0679e-15 2.05628E-04
0.03125 1.02670357750080598400 | 1.02670357750080729130 | 1.3073e-15 2.77908E-04
Table 4: Numerical Results of Problem 3
X Exact New Method Error
0.1 | 0.09983341664682815231 0.09983341664641143268 416719627e-13
0.2 | 0.19866933079506121546 0.19866933079151260797 3.54860749e-12
0.3 | 0.29552020666133957511 0.29552020665229235391 9.0472212e-12
0.4 | 0.38941834230865049167 0.38941834229214808125 1.650241042¢e-11
0.5 | 0.47942553860420300027 | 0.47942553857875939095 | 2.544360932e-11
0.6 | 0.56464247339503535720 | 0.56464247335967945648 | 3.535590072e-11
0.7 | 0.64421768723769105367 0.64421768719198266396 4570838971e-11
0.8 | 0.71735609089952276163 0.71735609084353295021 5.598981142¢-11
0.9 | 0.78332690962748338846 | 0.78332690956173874562 6.574464284e-11
1.0 | 0.84147098480789650665 | 0.84147098473329359276 7.460291389%¢-11

Discussion of Results

Tables 2, 3 and 4 give the numerical
results for problems 1, 2 and 3. The superiority of
our method is established numerically in Tables 2
and 3 as it compared favourably well with existing
methods.

The efficiency of the method, which we
further implement on Vander pol's Oscillator

Problem, is seen in Table 4 as it reproduces the
exact solutions with small error values.

Conclusion

Formulation of initial value problem solver
has been developed using a new class orthogonal
polynomials with recursive formula. Three test
problems have been considered to show the

16



Fountain Journal of Natural and Applied Sciences: 2016; 5(2): 12 - 17

efficiency and accuracy of the method.

Tables 2, 3 and 4 display the accuracy and
comparison of the numerical results of the method
with existing methods. The method is desirability
as its superiority has been established by the
numerical results.

We hope to extend the scope of this study to
partial differential equation in our future paper.
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