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Abstract 

This work focuses on development of an initial value problem solver by employing a new class of orthogonal 

polynomial, the basis function. We present the recursive formula of the class of polynomials constructed 

and adopt collocation technique to develop the method. The method was analyzed for its basic properties 

and findings show that the method is accurate and convergent. 

AMS Subject Classification:  65L05, 65L06 
 

Keywords: Orthogonal polynomials, Algorithm, Block method, Collocation, Interpolation, Zero-Stable.  

 

 

Introduction 

The second order differential equations 

arise in many important area of physical problems. 

The difficulties encounter in solving such problems 

has led to development of numerical methods. To 

develop such numerical methods, polynomial plays 

an important role. Notable among the well-known 

polynomials are the orthogonal polynomials. 

Orthogonal polynomial sequence is a family of 

polynomials such that any two different polynomials 

in the sequence are orthogonal to each other under 

some inner product. The first orthogonal 

polynomials were the Legendre polynomials. Then 

came the Chebyshev polynomials, the general 

Jacobi polynomials, the Hermite and the Laguerre 

polynomials. All these classical orthogonal 

polynomials play an important role in many applied 

problems. 

Asymptotic formulae for orthogonal 

polynomials were first discovered bySzegö, (1975).  

Lanczos (1938) introduced Chebyshev polynomials 

as trial function. Several researchers have 

employed these polynomials as trial functions to 

formulate algorithms (see Shampine and Watts 

(1969), Tanner (1979), Dahlquist (1979), Jator 

(2007), Awoyemi (1991)) which are in block forms 

for solving second order initial value problems 

directly. 

Fatunla (1994) gave a generalization to 

blockmethods using some definition inmatrix 

form.Hence, thismotivates us to extend themethod 

to blockmethod in solving ODEs using a new set of 

polynomials. 

In this work, we shall employ a non-negative weight 

function to construct a class of orthogonal 

polynomials which will serve as trial functions to 

formulate numerical algorithms for the solution of 

initial value problems.  

 

Construction of Orthogonal Basis Function 

We define the orthogonal polynomial of 

the first kind of degree n over the interval [-1, 1] 

with respect to weight function
22 )1()(  xxw as 
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For the purpose of constructing the basis function, 

we adopt the approach discussed extensively in 

Adeyefa and Adeniyi (2015) and use additional 

property (the normalization)  
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Using (2), equation (1) yields 
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In the spirit of Golub and Fischer (1992), equation 

(3) must satisfy three-term recurrence relation   

00121 )(,0)(,...,2,1),()()()( ptptpjtpbtpattpc jjjjj  

where 

 bj, cj> 0 for 1j  (b1 is arbitrary). 

,...2,1),(1)(2),()52()(1)(),(1)5()(  nxnnPtjpjbxnxPntjpjatxnPntpjc

The recursive formula for these orthogonal 

polynomials is therefore given as 
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 This relation, along with the two 

polynomials P0(x) and P1(x), allows the new set of 

polynomials to be generated recursively. 

In what immediately follows, we shall 

develop an algorithm to integrate second order 

differential equations where polynomials qn(x) shall 

be employed as basis function. Thereafter, the 

analysis of the method for convergence and 

implementation of the method through some test 

problems shall be presented. Finally, conclusion 

shall be made. 

Development of the Method 

In this section, our aim is to derive a 

continuous scheme from which a set of block 

formula is developed. To make this happen, we shall 

seek an approximant 
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to obtain the solution of second order initial value 

problems in ordinary differential equations. 

Transforming qn(x) to interval [0, 1], we have

ph

phxX
x n 


22
, where p varies as the method 

to be developed. In this case, p = 3, s and k in (4) 

are points of interpolation and collocation 

respectively. The procedure involves interpolating 

(4) at points s = 
3

1
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Substituting (5) into (4) yields the continuous 

implicit method 
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Evaluating equation (6) at x = xn+m, m= 3,2,1,
2
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yields the discrete equations 
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whose values of  and are given in Table 1. 

To develop the block method from the continuous 

scheme, we adopt the general block formula 

proposed in Shampine and Watts (1969) in the 

normalized form given as 
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Evaluating the first derivative of (6) at x = xn+j, j = 

0 3,2,1,
2

1
,

3

1
,

4

1
,

5

1
, , substituting the  

resulting equations and equation (7) into (8) and 

solving simultaneously gives a block formulae 

represented as Equation (9) is our desired block 

method of which its basic properties shall be 

discussed in the next section. 
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Analysis of the Method 

  

Order and Error Constant  

Following Henrici (1962), the approach 

adopted in Fatunla (1991, 1994) and Lambert 

(1973), we define the local truncation error 

associated with equation (7) by the difference 

operator  
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where )(xy  is an arbitrary function, continuously 

differentiable on [a, b].  

Expanding (10) in Taylor series about the point x, 

we obtain the expression 
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According to Lambert (1973), equations (7) is of 

order p if  

01210  pp CCCCC  and 02 pC  

The 02 pC  is called the error constant and 

)(22

2 n

pp

p xyhC 

  is the principal local truncation 

error at the point nx . 

Thus, equations (7) is of order 8 with the error 

constants  

 TpC 468111111

2 1022.1,1022.7,1059.2,1025.5,1089.4,1076.7 
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Zero Stability of the Method 

According to Lambert (1973), a linear 

multistep method is said to be zero-stable if no 

root of the first characteristic polynomial  )(R

has modulus greater than one and if every root of 

modulus one has multiplicity not greater than the 

order of the differential equation. 

To analyze the zero-stability of the 

method, we present (9) in vector notation form of 

column vectors  Treee 1 ,   Trddd 1 ,  

 Trnnm yyy  1 ,    Trnnm ffyF  1  and 

matrices  )( ijaA   ,  )( ijbB  . 

Thus, equation (9) forms the block formula 

nnmm hdfyAyhBFyA  10 )( (11)

                                

where h  is a fixed mesh size within a block. 

Hence, based on the definition above, the scheme 

is zero stable. 

Consistency of the Method 

According to Lambert (1973), a linear 

multistep method is said to be consistent if it has 

order at least one. Owing to this definition, 

equations (7) and (9) are consistent. 
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Convergency of the Method 

According to the theorem of Dahlquist, the 

necessary and sufficient condition for a LMM to be 

convergent is to be consistent and zero stable. 

Since the method satisfies the two conditions 

hence it is convergent.  
 

4.5 Numerical Experiment 

Three test problems are considered to 

demonstrate the accuracy of the method. 
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Problem 3: We consider Vander pol’s Oscillator Problem 

1.0,1)0(',0)0(,'23coscos2
'"  hyyyyyyxxy

whose exact solution is y(x) = sinx 

 

 

 

 

Table 1: Tabular Representation of Discrete Equations 

 

 

 

 

 

 

 

 

5

1
n

y  
4

1
n

y  
2

1
n

y  1ny  2ny  3ny  

nf  

006458484375

559066591-
 

802708884684

146852003-
 

4232632320

4222913
 

8266860

258407
 

1653372

6193885
  

688905

23653037
 

5

1
n

f  

5208121800

128106749
  

6966826389405

751050502343-
 

564266493378

51525273437
 

208324872

210859375
  

833299488

251115928906
 

17360406

51965882812
  

4

1
n

f  

18751243258242

562386801602
 

02036954304

208524331
 

159137055

4832648
  

159137055

328042496
 

2893401

688990208
  

53045685

841047464099
 

3

1
n

f  

01181250000

91280227
  

990904320

5095663
  

30965760

1045799
 

30240

36593
  

12096

1580795
 

2520

2625347
  

2

1
n

f  

6252421931640

1617428144
 

5079158784

2159021
 

198404640

299791
 

6200145

2781328
 

1240029

28511696
  

2066715

355815616
 

1nf  

006458484375

5594563
  

802708884684

1483733-
 

03386105856

103099
 

8266860

119087
 

13226976

24778813
 

688905

2953843
  

2nf  

125002034422578

21226229
 

42401706597351

1124087
 

25333116723

3103-
 

520812180

28073
  

104162436

5553811
 

8680203

11209049
 

3nf  

5000001989213187

6957967-
 

836801668672965

368323-
 

6481042920603

2203
 

5092385760

7723
 

185177664

123143-
 

84873096

4323101
 



 Fountain Journal of Natural and Applied Sciences: 2016; 5(2): 12 – 17 

16 
 

Table 2: Numerical Results of Problem 1 

x Exact New Method Error Error in [2] 

0.05 0.95122942450071400909 0.95122942450071076950 3.23959e-15 2.05e-11 

0.1 0.90483741803595957316 0.90483741803594163261 1.794055e-14 4.39e-11 

0.15 0.86070797642505780723 0.86070797642498871168 6.909555e-14 6.55e-11 

0.2 0.81873075307798185867 0.81873075307774470455 2.3715412e-13 8.38e-11 

0.25 0.77880078307140486825 0.77880078307062386240 7.8100585e-13 9.86e-11 

0.03 0.74081822068171786607 0.74081822067918416587 2.5337002e-12 1.10e-10 

0.35 0.70468808971871343435 0.70468808971053769036 8.17574399e-12 1.19e-10 

0.4 0.67032004603563930074 0.67032004600930714374 2.6332157e-11 1.24e-10 

0.45 0.63762815162177329314 0.63762815153701783346 8.475545968e-11 1.28e-10 

0.5 0.60653065971263342360 0.60653065943988919902 2.7274422458e-10 1.30e-10 

 

Table 3: Numerical Results of Problem 2 

 

Table 4: Numerical Results of Problem 3 

X Exact New Method Error 

0.1 0.09983341664682815231 0.09983341664641143268 4.16719627e-13 

0.2 0.19866933079506121546 0.19866933079151260797 3.54860749e-12 

0.3 0.29552020666133957511 0.29552020665229235391 9.0472212e-12 

0.4 0.38941834230865049167 0.38941834229214808125 1.650241042e-11 

0.5 0.47942553860420300027 0.47942553857875939095 2.544360932e-11 

0.6 0.56464247339503535720 0.56464247335967945648 3.535590072e-11 

0.7 0.64421768723769105367 0.64421768719198266396 4.570838971e-11 

0.8 0.71735609089952276163 0.71735609084353295021 5.598981142e-11 

0.9 0.78332690962748338846 0.78332690956173874562 6.574464284e-11 

1.0 0.84147098480789650665 0.84147098473329359276 7.460291389e-11 

 

Discussion of Results 

Tables 2, 3 and 4 give the numerical 

results for problems 1, 2 and 3. The superiority of 

our method is established numerically in Tables 2 

and 3 as it compared favourably well with existing 

methods.  

The efficiency of the method, which we 

further implement on Vander pol’s Oscillator 

Problem, is seen in Table 4 as it reproduces the 

exact solutions with small error values. 

 

Conclusion 

Formulation of initial value problem solver 

has been developed using a new class orthogonal 

polynomials with recursive formula. Three test 

problems have been considered to show the  

 

X Exact New Method Error Error in [4] 

0.003125 1.00307652585769622630 1.00307652585769623090 4.6e-18 3.8354 E-05  

0.00625 1.00605750308351628300 1.00605750308351632460 4.16e-17 7.5004E-05 

0.009375 1.00894499508883757910 1.00894499508883768810 1.09e-16 1.0592 E-04 

0.0125 1.01174101816798852880 1.01174101816798873410 2.053e-16 1.35476 E-04 

0.015625 1.01444754268641387440 1.01444754268641420320 3.288e-16 1.55567E-04 

0.01875 1.01706649423567260840 1.01706649423567308660 4.782e-16 1.86372E-04 

0.021875 1.01959975475628759200 1.01959975475628824410 6.521e-16 1.96055E-04 

0.025 1.02204916362943174130 1.02204916362943259040 8.491e-16 2.21045E-04 

0.028125 1.02441651873840268050 1.02441651873840374840 1.0679e-15 2.05628E-04 

0.03125 1.02670357750080598400 1.02670357750080729130 1.3073e-15 2.77908E-04 
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efficiency and accuracy of the method.  

Tables 2, 3 and 4 display the accuracy and 

comparison of the numerical results of the method 

with existing methods. The method is desirability 

as its superiority has been established by the 

numerical results.  

We hope to extend the scope of this study to 

partial differential equation in our future paper. 
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