

This work is licensed under Creative Commons Attribution 4.0 International License.

DOI: 10.53704/fujnas.v5i2.102

A publication of College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria.

Journal homepage: www.fountainjournals.com

ISSN: 2354-337X (Online), 2350-1863 (Print)

Orthogonal-Based Second Order Hybrid Initial Value Problem Solver

^{1*}Adeyefa, E.O., ¹Akinola, L.S., ²Folaranmi, R.O. and ²Owolabi Y.T.

¹Department of Mathematics, Federal University Oye-Ekiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria, ²Department of Mathematics, University of Ilorin, P.M.B 1515, Ilorin, Kwara State, Nigeria

Abstract

This work focuses on development of an initial value problem solver by employing a new class of orthogonal polynomial, the basis function. We present the recursive formula of the class of polynomials constructed and adopt collocation technique to develop the method. The method was analyzed for its basic properties and findings show that the method is accurate and convergent.

AMS Subject Classification: 65L05, 65L06

Keywords: Orthogonal polynomials, Algorithm, Block method, Collocation, Interpolation, Zero-Stable.

Introduction

The second order differential equations arise in many important area of physical problems. The difficulties encounter in solving such problems has led to development of numerical methods. To develop such numerical methods, polynomial plays an important role. Notable among the well-known polynomials are the orthogonal polynomials. Orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The first orthogonal polynomials were the Legendre polynomials. Then came the Chebyshev polynomials, the general Jacobi polynomials, the Hermite and the Laguerre polynomials. Αll these classical orthogonal polynomials play an important role in many applied problems.

Asymptotic formulae for orthogonal polynomials were first discovered by Szegö, (1975). Lanczos (1938) introduced Chebyshev polynomials as trial function. Several researchers have employed these polynomials as trial functions to

formulate algorithms (see Shampine and Watts (1969), Tanner (1979), Dahlquist (1979), Jator (2007), Awoyemi (1991)) which are in block forms for solving second order initial value problems directly.

Fatunla (1994) gave a generalization to blockmethods using some definition inmatrix form. Hence, this motivates us to extend the method to blockmethod in solving ODEs using a new set of polynomials.

In this work, we shall employ a non-negative weight function to construct a class of orthogonal polynomials which will serve as trial functions to formulate numerical algorithms for the solution of initial value problems.

Construction of Orthogonal Basis Function

We define the orthogonal polynomial of the first kind of degree n over the interval [-1, 1] with respect to weight function $w(x) = (x^2 - 1)^2$ as

*Corresponding author: +2348034150709 Email address: adeoluman@yahoo.com Fountain Journal of Natural and Applied Sciences: 2016; 5(2): 12 - 17

$$q_r(x) = \sum_{r=0}^{n} C_r^{(n)} x^r$$
 (1)

The following requirements are considered:

$$< q_m(x), q_n(x) > = 0, m = 0,1,2,...,n-1$$
 (2a)

For the purpose of constructing the basis function, we adopt the approach discussed extensively in Adeyefa and Adeniyi (2015) and use additional property (the normalization)

$$q_n(1) = 1 \tag{2b}.$$

Using (2), equation (1) yields

$$q_{0}(x) = 1$$

$$q_{1}(x) = x$$

$$q_{2}(x) = \frac{1}{6}(7x^{2} - 1)$$

$$q_{3}(x) = \frac{1}{2}(3x^{3} - x)$$

$$q_{4}(x) = \frac{1}{16}(33x^{4} - 18x^{2} + 1)$$

$$q_{5}(x) = \frac{1}{48}(143x^{5} - 110x^{3} + 15x)$$

$$q_{6}(x) = \frac{1}{32}(143x^{6} - 143x^{4} + 33x^{2} - 1)$$

$$q_{7}(x) = \frac{1}{32}(221x^{7} - 273x^{5} + 91x^{3} - 7x)$$

$$q_{8}(x) = \frac{1}{384}(4199x^{8} - 6188x^{6} + 2730x^{4} - 364x^{2} + 7)$$

$$q_{9}(x) = \frac{1}{128}(2261x^{9} - 3876x^{7} + 2142x^{5} - 420x^{3} + 21x)$$

$$q_{10}(x) = \frac{1}{256}(7429x^{10} - 14535x^{8} + 9690x^{6} - 2550x^{4} + 225x^{2} - 3)$$

In the spirit of Golub and Fischer (1992), equation (3) must satisfy three-term recurrence relation

$$c_{j}p(t)=(t-a_{j})p_{j-1}(t)-b_{j}p_{j-2}(t), j=1,2,...,p_{-1}(t)=0,\;p_{0}(t)\equiv p_{0}$$
 where

$$b_i$$
, $c_i > 0$ for $i \ge 1$ (b_1 is arbitrary).

$$c_{i}p(t) = (n+5)P_{n+1}(x), \ \ (t-a_{i})p_{i-1}(t) = (2n+5)xP_{n}(x), \ \ b_{i}p_{i-2}(t) = nP_{n-1}(x), n = 1,2,\dots$$

The recursive formula for these orthogonal polynomials is therefore given as

$$P_{n+1}(x) = \frac{1}{n+5} [(2n+5)xP_n(x) - nP_{n-1}(x)], n \ge 1, P_0(x) = 1, P_1(x) = x$$

This relation, along with the two polynomials $P_0(x)$ and $P_1(x)$, allows the new set of polynomials to be generated recursively.

In what immediately follows, we shall develop an algorithm to integrate second order differential equations where polynomials $q_n(x)$ shall be employed as basis function. Thereafter, the analysis of the method for convergence and

implementation of the method through some test problems shall be presented. Finally, conclusion shall be made.

Development of the Method

In this section, our aim is to derive a continuous scheme from which a set of block formula is developed. To make this happen, we shall seek

an

approximant

$$y(x) = \sum_{r=0}^{s+k-1} a_r q_r(x)$$
 (4)

to obtain the solution of second order initial value problems in ordinary differential equations. Transforming $q_n(x)$ to interval [0, 1], we have $x = \frac{2X - 2x_n - ph}{ph}$, where p varies as the method

to be developed. In this case, p = 3, s and k in (4) are points of interpolation and collocation respectively. The procedure involves interpolating

(4) at points $s = 0, \frac{1}{3}$ and collocating the second

derivative of (4) at points $k = 0, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3$.

The a_r , r = 0(1)9 from the resulting system of equations are obtained as

$$a_r = \alpha_0 y_n + \alpha_1 y_{n+\frac{1}{3}} + h^2 \sum_{j=0}^{3} \beta_j f_{n+j} + h^2 \beta_i f_{n+i}, \ r = 0 (1)9, \ i = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$
 (5)

Substituting (5) into (4) yields the continuous implicit method

$$y(x) = \alpha_0 y_n + \alpha_1 y_{n+\frac{1}{3}} + h^2 \sum_{i=0}^{3} \beta_j f_{n+j} + h^2 \beta_i f_{n+i}, i = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$
 (6)

Evaluating equation (6) at x = x_{n+m} , m= $\frac{1}{5}$, $\frac{1}{4}$, $\frac{1}{2}$,1,2,3 yields the discrete equations

$$y_{n+m} = \alpha_0 y_n + \alpha_1 y_{n+\frac{1}{3}} + h^2 \sum_{j=0}^{3} \beta_j f_{n+j} + h^2 \beta_i f_{n+i}, i = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$
 (7)

whose values of α and β are given in Table 1.

To develop the block method from the continuous scheme, we adopt the general block formula proposed in Shampine and Watts (1969) in the normalized form given as

(3)

Fountain Journal of Natural and Applied Sciences: 2016; 5(2): 12 - 17

$$A^{(0)}Y_{m} = ey_{m} + h^{\mu-\lambda}df(y_{m}) + h^{\mu-\lambda}bF(y_{m})$$
 (8)

Evaluating the first derivative of (6) at $x = x_{n+j}$, $j = 0, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3$, substituting the

resulting equations and equation (7) into (8) and solving simultaneously gives a block formulae represented as Equation (9) is our desired block method of which its basic properties shall be discussed in the next section.

$$y_{n+k} = \alpha_0 y_n + \psi_0 h y_n' + h^2 \sum_{j=0}^{3} \beta_j f_{n+j} + h^2 \beta_i f_{n+i}, k = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3, i = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$

$$y_{n+k}' = \psi_0 y_n' + h \sum_{j=0}^{3} \beta_j f_{n+j} + h \beta_i f_{n+i}, k = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3, i = \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$
(9)

Analysis of the Method

Order and Error Constant

Following Henrici (1962), the approach adopted in Fatunla (1991, 1994) and Lambert (1973), we define the local truncation error associated with equation (7) by the difference operator

$$L[y(x):h] = \sum_{j=0}^{k} \left[\alpha_{j} y(x_{n} + jh) - h^{2} \beta_{j} f(x_{n} + jh) \right]$$
(10)

where y(x) is an arbitrary function, continuously differentiable on [a, b].

Expanding (10) in Taylor series about the point x, we obtain the expression

$$L[y(x);h] = C_0 y(x) + C_1 h y'(x) + C_2 h^2 y''(x) + \ldots + C_{p+3} h^{p+3} y^{p+3}(x)$$
 where the C_0 , C_1 , C_2 , C_p , ... are obtained as

$$C_{0} = \sum_{j=0}^{k} \alpha_{j}, \quad C_{1} = \sum_{j=1}^{k} j \alpha_{j}, \quad C_{2} = \frac{1}{2!} \sum_{j=1}^{k} j^{2} \alpha_{j},$$

$$C_{q} = \frac{1}{q!} \left[\sum_{j=1}^{k} j^{q} \alpha_{j} - q(q-1)(q-2) \sum_{j=1}^{k} \beta_{j} j^{q-3} \right]$$

According to Lambert (1973), equations (7) is of order p if

$$\begin{split} C_0 &= C_1 = C_2 = \dots C_p = C_{p+1} = 0 \text{ and } C_{p+2} \neq 0 \\ \text{The } & C_{p+2} \neq 0 \text{ is called the error constant and } \\ & C_{p+2} h^{p+2} y^{p+2}(x_n) \text{ is the principal local truncation error at the point } x_n \,. \end{split}$$

Thus, equations (7) is of order 8 with the error constants

$$C_{p+2} = \left[7.76 \times 10^{-11}, 4.89 \times 10^{-11}, -5.25 \times 10^{-11}, -2.59 \times 10^{-8}, 7.22 \times 10^{-6}, -1.22 \times 10^{-4}\right]^{T}$$

Zero Stability of the Method

According to Lambert (1973), a linear multistep method is said to be zero-stable if no root of the first characteristic polynomial $\rho(R)$ has modulus greater than one and if every root of modulus one has multiplicity not greater than the order of the differential equation.

To analyze the zero-stability of the method, we present (9) in vector notation form of column vectors $e=(e_1\dots e_r)^T$, $d=(d_1\dots d_r)^T$, $y_m=(y_{n+1}\dots y_{n+r})^T$, $F(y_m)=(f_{n+1}\dots f_{n+r})^T$ and matrices $A=(a_{ij})$, $B=(b_{ij})$.

Thus, equation (9) forms the block formula

$$A^{0}y_{m} = hBF(y_{m}) + A^{1}y_{n} + hdf_{n}$$
 (11)

where h is a fixed mesh size within a block.

Hence, based on the definition above, the scheme is zero stable.

Consistency of the Method

According to Lambert (1973), a linear multistep method is said to be consistent if it has order at least one. Owing to this definition, equations (7) and (9) are consistent.

Convergency of the Method

According to the theorem of Dahlquist, the necessary and sufficient condition for a LMM to be convergent is to be consistent and zero stable. Since the method satisfies the two conditions hence it is convergent.

4.5 Numerical Experiment

Three test problems are considered to demonstrate the accuracy of the method.

Problem 1:

$$y'' = -1001y' - 1000y, y(0) = 1, y'(0) = -1, h = 0.05$$

Exact Solution: $y(x) = \exp(-x)$

Problem 2:

$$y'' = -\frac{6}{x}y' - \frac{4}{x^2}y, y(1) = 1, y'(1) = 1, h = \frac{0.1}{32}$$

Exact Solution:
$$y(x) = \frac{5}{3x} - \frac{2}{3x^4}$$

Problem 3: We consider Vander pol's Oscillator Problem $y'' = 2\cos x - \cos^3 x - y' - y - y^2 y', y(0) = 0, y'(0) = 1, h = 0.1$ whose exact solution is $y(x) = \sin x$

Table 1: Tabular Representation of Discrete Equations

	$y_{n+\frac{1}{5}}$	$y_{n+\frac{1}{4}}$	$y_{n+\frac{1}{2}}$	\mathcal{Y}_{n+1}	\mathcal{Y}_{n+2}	y_{n+3}
f_n	- 559066591	- 146852003	4222913	258407	6193885	23653037
	6458484375 00	2708884684 80	4232632320	8266860	1653372	688905
f_{-1}	128106749	- 105050234375	15252734375	210859375	111592890@5	_ 1965882812 5
$J_{n+\frac{1}{5}}$	5208121800	682638940 5 96	426649337 \$ 6	208324872	833299488	17360406
f_{-1}	23868016036	208524331	4832648	328042496	688990208	1047464099 84
$n+{4}$	12432582421875	2036954304 0	159137055	159137055	2893401	53045685
f_{-1}	91280227	5095663	1045799	_ 36593	1580795	_ 2625347
$J_{n+\frac{1}{3}}$	118125000@	990904320	30965760	30240	12096	2520
$f_{n+\frac{1}{2}}$	1617428144	2159021	299791	2781328	28511696	355815616
$n \cdot \frac{1}{2}$	242193164\625	5079158784	198404640	6200145	1240029	2066715
f_{n+1}	5594563	- 1483733	103099	119087	24778813	_ 2953843
	645848437 5 00	27088846840	33861058560	8266860	13226976	688905
f_{n+2}	21226229	1124087	- 3103	28073	5553811	11209049
	2034422578 2500	170659735 #240	5333116723 2	520812180	104162436	8680203
f_{n+3}	- 6957967	- 368323	2203	7723	- 123143	4323101
	1989213187500000	166867296\$3680	1042920603648	5092385760	185177664	84873096

Table 2: Numerical Results of Problem 1

×	Exact	New Method	Error	Error in [2]
0.05	0.95122942450071400909	0.95122942450071076950	3.23959e-15	2.05e-11
0.1	0.90483741803595957316	0.90483741803594163261	1.794055e-14	4.39e-11
0.15	0.86070797642505780723	0.86070797642498871168	6.909555e-14	6.55e-11
0.2	0.81873075307798185867	0.81873075307774470455	2.3715412e-13	8.38e-11
0.25	0.77880078307140486825	0.77880078307062386240	7.8100585e-13	9.86e-11
0.03	0.74081822068171786607	0.74081822067918416587	2.5337002e-12	1.10e-10
0.35	0.70468808971871343435	0.70468808971053769036	8.17574399e-12	1.19e-10
0.4	0.67032004603563930074	0.67032004600930714374	2.6332157e-11	1.24e-10
0.45	0.63762815162177329314	0.63762815153701783346	8.475545968e-11	1.28e-10
0.5	0.60653065971263342360	0.60653065943988919902	2.7274422458e-10	1.30e-10

Table 3: Numerical Results of Problem 2

X	Exact	New Method	Error	Error in [4]
0.003125	1.00307652585769622630	1.00307652585769623090	4.6e-18	3.8354 E-05
0.00625	1.00605750308351628300	1.00605750308351632460	4.16e-17	7.5004E-05
0.009375	1.00894499508883757910	1.00894499508883768810	1.09e-16	1.0592 E-04
0.0125	1.01174101816798852880	1.01174101816798873410	2.053e-16	1.35476 E-04
0.015625	1.01444754268641387440	1.01444754268641420320	3.288e-16	1.55567E-04
0.01875	1.01706649423567260840	1.01706649423567308660	4.782e-16	1.86372E-04
0.021875	1.01959975475628759200	1.01959975475628824410	6.521e-16	1.96055E-04
0.025	1.02204916362943174130	1.02204916362943259040	8.491e-16	2.21045E-04
0.028125	1.02441651873840268050	1.02441651873840374840	1.0679e-15	2.05628E-04
0.03125	1.02670357750080598400	1.02670357750080729130	1.3073e-15	2.77908E-04

Table 4: Numerical Results of Problem 3

Table 1. Tallier lear researce of 1. Toblem 6					
X	Exact	New Method	Error		
0.1	0.09983341664682815231	0.09983341664641143268	4.16719627e-13		
0.2	0.19866933079506121546	0.19866933079151260797	3.54860749e-12		
0.3	0.29552020666133957511	0.29552020665229235391	9.0472212e-12		
0.4	0.38941834230865049167	0.38941834229214808125	1.650241042e-11		
0.5	0.47942553860420300027	0.47942553857875939095	2.544360932e-11		
0.6	0.56464247339503535720	0.56464247335967945648	3.535590072e-11		
0.7	0.64421768723769105367	0.64421768719198266396	4.570838971e-11		
8.0	0.71735609089952276163	0.71735609084353295021	5.598981142e-11		
0.9	0.78332690962748338846	0.78332690956173874562	6.574464284e-11		
1.0	0.84147098480789650665	0.84147098473329359276	7.460291389e-11		

Discussion of Results

Tables 2, 3 and 4 give the numerical results for problems 1, 2 and 3. The superiority of our method is established numerically in Tables 2 and 3 as it compared favourably well with existing methods.

The efficiency of the method, which we further implement on Vander pol's Oscillator

Problem, is seen in Table 4 as it reproduces the exact solutions with small error values.

Conclusion

Formulation of initial value problem solver has been developed using a new class orthogonal polynomials with recursive formula. Three test problems have been considered to show the

efficiency and accuracy of the method.

Tables 2, 3 and 4 display the accuracy and comparison of the numerical results of the method with existing methods. The method is desirability as its superiority has been established by the numerical results.

We hope to extend the scope of this study to partial differential equation in our future paper.

References

- Adeyefa, E.O., & Adeniyi, R.B. (2015) Construction of Orthogonal Basis Function and formulation of continuous hybrid schemes for the solution of third order ODEs. Journal of the Nigerian Association of Mathematical Physics, 29, 21-28.
- Adeniran, A.O., & Ogundare, B.S. (2015) An efficient hybrid numerical scheme for solving general second order initial value problems (IVPs). International Journal of Applied Mathematical Research, 4(2), 411-419.
- Awoyemi, D.O. (1991) A class of Continuous Linear Multistep Method for general second order initial value problems in ordinary differential equations. International Journal of Computer Mathematics, 72, 29-37.
- Badmus, A.M., & Yahaya, Y.A. (2009) An Accurate Uniform Order 6 Block Method for Direct Solution of General Second Order Ordinary Differential Equations. The Pacific Journal of Science and Technology, 10(2), 248-254.
- Dahlquist, G. (1979) Some properties of linear multistep and one leg method for ordinary differential equations. Department of computer science, Royal institute of technology, Stockholm.

- Fatunla, S.O. (1991) Block Method for Second Order Initial Value Problem (IVP). International Journal of Computer Mathematics, 41, 55-63.
- Fatunla, S.O. (1994) A Class of Block Methods for Second Order IVPs. International Journal of Computer Mathematics, 55, 119-133.
- Golub, G.H., & Fischer B. (1992) How to generate unknown polynomials out of known orthogonal polynomials. Journal of Computational and Applied Mathematics, 43, 99 115.
- Jator, S.N. (2007) A sixth order Linear Multistep Method for direct solution of y'' = f(x, y, y'). International Journal of Pure and Applied Mathematics, 40(1), 407-472.
- Henrici, P. (1962) Discrete variable methods for ODEs. John Wiley, New York.
- Lambert, J.D. (1973) Computational methods for ordinary differential equations. John Wiley, New York.
- Lanczos, C. (1938) Trigonometric interpolation of empirical and analytical functions. Journal of Mathematical Physics. 17, 123 199.
- Shampine, L.F., & Watts, H.A. (1969) Block implicit one-step methods. Journal of Computer Mathematics. 23:731-740.
- Szego, G. (1975) Orthogonal polynomials. American Mathematical Society Colloquium publications.
- Tanner, L.H. (1979) The spreading of Silicone Oil Drops on Horizontal Surfaces. Journal of Physics and Applied Physics 12:1473-1484.